
AFRL-IF-RS-TR-2001-197
Final Technical Report
October 2001

A PROCESS CONTROL AND DIAGNOSIS
APPROACH TO INDICATIONS AND WARNING OF
ATTACKS ON COMPUTER NETWORKS

Arizona State University

Nong Ye

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20020116 198
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-197 has been reviewed and is approved for publication.

APPROVED:

JOHN FELDMAN
Project Engineer

FOR THE DIRECTOR:
' ' " " ' ' ' L.

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing

the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

OCTOBER 2001
3. REPORT TYPE AND DATES COVERED

 Final Oct 98 - Sep 99
4. TITLE AND SUBTITLE

A PROCESS CONTROL AND DIAGNOSIS APPROACH TO INDICATIONS AND
WARNING OF ATTACKS ON COMPUTER NETWORKS

6. AUTHOR(S)

Nong Ye

S. FUNDING NUMBERS

C - F30602-98-2-0005
PE- 61102F
PR- 2301
TA- 02
WU-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Arizona State University
Department of Industrial Engineering
PO Box 875906
Tempe AZ 85287

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFGB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-197

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: John Feldman/IFGB/(315) 330-2664

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

Cyber attacks are launched as a series of computer actions designed to compromise the security (e.g., availability, integrity,
and confidentiality) of a computer and network system. In this report, we first illustrate a process control approach to
system modeling for information assurance. A model-based design of attack detection techniques is then presented to
demonstrate how a process model of a networked computer system can be applied to cyber attack detection. Then using
audit data capturing activities on computer and network systems, we develop and present learning and inference algorithms
of probabilistic networks with undirected links. This technique is used to represent the symmetric relations of audit event
types during normal activities, to build a long-term profile of normal activities, and to perform anomaly detection. The
resultant probabilistic network is then trained with audit data from both normal activities and computer attack activities. The
test results demonstrate very promising performance in detecting cyber attacks.

14. SUBJECT TERMS

Process Control Modeling, Information Attack Detection, Intrusion Detection, Anomaly
Detection, Probabilistic Networks

15. NUMBER OF PAGES

60
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTFIACT

UL
Standard Form 298 (Reu. 2-89) (EG)
Prescribed by ANSI Std.23B.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Table of Contents

1. INTRODUCTION 1

2. PROCESS CONTROL APPROACH TO CYBER ATTACK DETECTION 6

2.1. A Process Control Approach to System Modeling 6

2.2. Automated System Modeling 13

2.3. Model-based Attack Detection 15

2.4. Conclusion 19

3. PROBABILISTIC NETWORK TECHNIQUE FOR CYBER ATTACK DETECTION 21

3.1. Problem Definition 21
3.1.1. Data Source 21
3.1.2. Training and Testing Data 22

3.1.3. Knowledge Representation 22
3.1.4. Attack Detection Problem 23

3.2. Learning and Inference of Probabilistic Networks 24
3.2.1. Bayesian Networks 25
3.2.2. Probabilistic Networks with Undirected Links 26
3.2.3. Learning of Joint Probability Tables 27
3.2.4. Learning of the Structure of a Probabilistic Network 28
3.2.5. Inference Algorithm ■ 34

3.3. Probabilistic Networks For Cyber Attack Detection 37

3.4. Results And Discussions 39

REFERENCES 42

List of Figure Captions

Figure 2-1 A process model of a security-aware computer and network system. 8

Figure 2-2 Activities in the process model during a password guessing attack. 12

I Q

Figure 2-3 Model-based attack detection techniques.

Figure 3-1 An example of the initial structure of a probabilistic network and relations among

31
ariable nodes.

Figure 3-2 Probability update and propagation in a probabilistic network. 36

II,

List of Table Captions

Table 2-1 The model-based attack detection techniques in the process model. 18

Table 3-1 The statistics of the testing results. *°

III

Abstract

A cyber attack is launched through a series of computer actions to compromise

the security (e.g., availability, integrity, and confidentiality) of a computer and network

system. Attacks on information systems have presented serious threats to the reliable

operation of information systems. The detection of those attacks plays an important role

in assuring the reliability of information systems. In this report, we first illustrate a

process control approach to system modeling for information assurance. A model-based

design of attack detection techniques is presented to demonstrate how a process model

of a computer and network system supports cyber attack detection. Then in order to use

the audit data to capture activities on a computer and network system and detect cyber

attacks, we develop and present the learning and inference algorithms of probabilistic

networks with undirected links in this report. The technique of probabilistic networks

with undirected links is used to represent the symmetric relations of audit event types

during normal activities, build a long-term profile of normal activities, and perform

anomaly detection for cyber attack detection. The probabilistic networks, trained with

the audit data of normal activities, demonstrate a very promising performance in

detecting attack activities during the testing with the audit data of both normal activities

and attack activities.

IV

1. Introduction

A cyber attack is an attack on a computer and network system, consisting of computer

actions (e.g., remote or local connection, computer file access, program execution, etc.)

to compromise the secure operation of the computer and network system. As we

increasingly rely on information infrastructures to support critical operations in defense,

banking, telecommunication, transportation, electric power and many other systems,

cyber attacks have become a significant threat to our society with potentially severe

consequences [1-2].

A computer and network system must be protected to assure security goals such

as availability, confidentiality and integrity, through prevention, detection, isolation,

assessment, reaction, and vulnerability testing. Attack prevention can be enforced

through firewalls and guards, boundary control with security policies, authentication, and

encryption. Attack detection identifies cyber attacks being leaked through the fence of

prevention and acting on a computer and network system. Attack isolation reveals the

source and path (course of actions or core events) of a cyber attack, leading to observed

attack symptoms, as well as affected entities (e.g., users, files, programs, hosts, and/or

domains). Attack assessment determines the degree and nature of damage to affected

entities with respect to security risk. Attack reaction takes control actions to get an

attacker out of a computer and network system, maintains the system operation even in a

degraded mode, and eventually recovers the system back to a normal state. Vulnerability

testing looks for points (e.g., a weak password) of a computer and network system that

make the system vulnerable to cyber attacks.

Information assurance activities present much resemblance to process control

activities that are usually carried out to assure the safe operation of many engineering

systems, such as energy generation systems in nuclear power plants. Process control

activities include:

• System planning, to design, specify and implement laws and rules governing the safe

system operation;

• System control, to assure the safe operation of the system through diagnostic control

and routine maintenance:

• Diagnostic control, to monitor on-line system operation data for the presence of fault

symptoms, trace the source and path of faults, assess the impact of faults, and take

control actions to recover the system back to a normal state;

• Routine maintenance, to collect and use the historic data of system component

reliability to set up an inspection and maintenance schedule, and perform scheduled

inspection and maintenance.

When placing information assurance in the context of process control, attack prevention

is analogous to system planning. Attack detection, isolation, assessment and reaction are

parts of diagnostic control. Vulnerability testing is similar to routine maintenance.

An advantage of applying process control to information assurance is to gain a

system-centered paradigm that assists in modeling a computer and network system and

designing a model-based information assurance system. Existing techniques for

information assurance fall short of system modeling, even though system modeling is

imperative to understand how cyber attacks work in a computer and network system. An

understanding of system operation and attack mechanisms is the foundation of designing

and integrating information assurance activities.

In chapter 2 of this report, we illustrate a process control approach to system

modeling for information assurance, which leads to a Cyber Attack Control System

(CACS). A model-based design of attack detection techniques is presented to

demonstrate how a process model of a computer and network system supports cyber

attack detection.

As stated above, a cyber attack is launched through a series of computer actions to

compromise the security (e.g., availability, integrity, and confidentiality) of a computer

and network system. For example, a denial-of-service attack attempts to flood the

communication link to a host machine with large volumes of data packets and thus make

services from the host machine unavailable. A remote-to-user attack attempts to gain

unauthorized access to a user account on a host machine and then to damage the integrity

and confidentiality of data on the host machine through the compromised user account. A

regular user on a host machine launches a user-to-root attack to gain the privileges of a

root user and then to compromise the availability, integrity and confidentiality of the host

machine. The detection of those attacks plays an important role in assuring the reliability

of information systems. Attack detection signals cyber attacks acting on information

systems.

Existing attack detection techniques fall in two major categories: anomaly

detection and signature recognition [3-6]. For a subject (e.g., user, file, and privileged

program) of interest, anomaly detection techniques establish a profile of the subject's

normal behavior (norm profile), compare the observed behavior of the subject with its

norm profile, and signal attacks when the subject's observed behavior deviates

significantly from its norm profile. Signature recognition techniques recognize the

signatures of known attacks, match the subject's observed behavior with those known

signatures, and signal attacks when there is a match. Signature recognition techniques

cannot detect novel attacks whose signatures are unknown [7-16]. This study focuses on

anomaly detection techniques for detection attacks on information systems.

Anomaly detection techniques consider the deviations of a subject's observed

behavior from its norm profile as symptoms of attacks. If novel attacks generate behavior

different from the norm profile, novel attacks can be detected through anomaly detection

techniques. Several anomaly detection techniques exist using statistical-based, sequences-

based, logic-based, and rules-based norm profiles [17-30]. In SRI International's

IDES/NIDES systems, a statistical-based profiling technique is used to represent the

expected normal behavior of a subject and variance due to noises [20-23]. The statistical-

based profiling technique overcomes the problems with the sequences-based, logic-based

and rules-based profiling technique in representing noises and variances. However, SRI's

statistical-based profiling technique is not robust to the assumption of normally

distributed data. If data are not close to a normal distribution, the technique cannot

produce reasonable results.

In chapter 3 of this report, we present a probabilistic network technique that we

develop to capture and represent the profile of the normal behavior. Probabilistic

inference is used for detecting anomalies. Since no specific forms of statistical

distributions and distribution-based statistical inferences are used in the profile

representation and anomaly detection, our technique overcomes the problem with the

normality assumption.

This paper presents the probabilistic network technique for cyber attack detection

and the process control approach to cyber attack detection in chapter 2 and in chapter 3

respectively.

2. Process Control Approach to Cyber Attack Detection

In this chapter, we present a model-based design of attack detection techniques to

demonstrate how a process model of a computer and network system supports cyber

attack detection.

2.1. A Process Control Approach to System Modeling

For large-scale, complex engineering systems, system models are built through levels of

abstraction to divide and conquer the system complexity by capturing different aspects of

systems at different levels. Four levels of abstraction have been found important to

process control of many engineering systems, including nuclear power plants and

manufacturing systems [1-2]. The four levels are: objective, conceptual, functional and

physical.

At the objective level, the goals of a system are stated. The goals of the system are

transformed into the time-based operational behavior (e.g., states and state transitions) of

the system at the conceptual level. Each operation at the conceptual level is supported by

a group of tasks at the functional level. Those tasks take place in a functional architecture

of the system that describes functional components of the system and their relationships.

A functional architecture can be implemented in different physical forms. Functional

tasks are implemented at the physical level through physical actions that occur in the

physical anatomy of the system.

Hence, the conceptual level deals with temporal relationships (relationships

between behaviors at different times) in the system, whereas the functional level and the

physical level concern spatial relationships (relationships between components at

different locations) in the system. As we move from the objective level to the physical

level, we shift from a general, abstract understanding of the system to a specific, concrete

understanding of the system. The system models at different levels are linked in that

activities and entities at one level are aggregated into activities and entities at a higher

level, and are decomposed into activities and entities at a lower level. The system models

at all levels form a complete process model of the system.

The process model is two-dimensional in that it defines the system at multiple

levels of abstraction (objective, conceptual, functional and physical) and at multiple

scales of scope (components, subsystems and system). The dimension of scale may

consist of more than three scales, if necessary. For example, subsystems can be further

divided into subsystems of subsystems, and so on.

We develop a multi-level, multi-scale process model of a computer and network

system to capture the security-related system behavior [31]. What entities and activities

of a computer and network system are included in the process model depends on their

relevance to system security. Figure 2-1 illustrates the process model of a security-aware

computer and network system.

We first examine the process model in the dimension of the abstraction levels.

The objective level states security goals of an entity (component, subsystem or system)

such as confidentiality, integrity, and availability. The conceptual level describes

security-critical states and state transitions of an entity. The state-transition model focuses

on the temporal structure of the entity behavior. The functional level models the spatial

structure of a functional entity (e.g., user, file, program, process, host, and enclave) which

exists in the software domain. The spatial structure of a functional entity describes

functional elements of the entity and functional relationships (e.g., message passing and

function calls) among those elements. The physical level describes the spatial structure of

a physical entity (e.g., cables, CPU, memory board, hard disk, printer, and other physical

devices) that exists in the hardware domain. Hence, the conceptual level deals with

temporal relationships among states of an entity, whereas the functional and physical

levels deal with spatial relationships of elements in the entity.

Level:

Objective

Conceptual

Functional

Physical

'(file sate 2 J} ~sv
states of other
components

other component structure
File Attributes

Methods

ownerlD
groupID
data
status

rread
write

HardDisk Attributes

Methods

other component structure

Scale: Components

states of othei
subsystems

states of other
Subsystems

other subsystem structures

router {-j packet |-| hostl fr-| mail daemon

structure of a subsystem

other files other users

cable |—I: structure of a subsystem

| phone line]—| modem]—| CPU j— Hard disk

otlSubB^Stena&uctures

subsystem N

subsystem 1

subsystem 2

subsystem 1

subsystem 2

I

subsystem M

Figure 2-1. A process model of a security-aware computer and network system.

Entities and activities at different levels are associated. For example, the hard disk

is a physical entity in the hardware domain. If a file resides on the hard disk, there is an

association between the hard disk and the file. A physical activity (e.g., a "read" action)

on the hard disk supports a functional activity (e.g., an UNIX "vi" command) on the file.

A damage to the hard disk at the physical level changes an attribute of the file at the

functional level and the state of the file from accessible to inaccessible at the conceptual

level, which further leads to the unavailability of the file at the objective level (see the

four cells at the components scale from the physical level to the objective level in Figure

2-1).

Hence, physical entities are associated with functional entities. Attributes of a

physical entity are reflected in attributes of associated functional entities. Values of

attributes of a functional entity at a given time constitute the state of the functional entity

at that time. States and state transitions of the functional entity are modeled at the

conceptual level. States or state transitions of the entity are further evaluated into a

security posture with respect to security goals.

The physical level is important to detect close-in attacks through hardware

subversion. However, most cyber attacks are launched through functional entities in the

software domain. Hence, we focus on cyber attacks through functional entities. When

building the process model of a computer and network system in our study, we start

directly from the functional level.

We now examine the process model in the dimension of scales. At the

components scale, entities are individual components of a computer and network system,

such as software components (e.g., files, users, programs, and processes). At the

subsystem scale, entities are subsystems (e.g., host machines) of the computer and

network system. At the system scale, there is a single entity - the computer and network

system as a whole (e.g., an enclave administrated independently by an organization).

In the process model there are two types of entities: component-wide entities and

system-wide entities including subsystems and the system. Using the object-oriented

methodology to represent the process model, an entity is represented by an object with

attributes and methods (see Figure 2-2). Without the physical level, attributes of an entity

contains mainly:

• entity ID,

• the spatial structure of the entity at the functional level,

• the temporal structure (states and state transitions) of the entity at the conceptual

level,

• a security posture (a secure state, a state violating availability, a state violating

confidentiality, a state violating integrity, and so on) of the entity at the objective

level,

• an activity history (a history of method requests),

• IW (Indications & Warning) values including a composite IW and IWs from

individual attack detection techniques, and

• the current state class.

A component-wide entity and a system-wide entity differ only in the spatial structure.

The spatial structure of a component-wide entity describes properties of the entity (see

the password file in Figure 2-2). The spatial structure of a system-wide entity includes a

list of elements and their relationships.

For each entity, we keep a history of activities that have occurred to the entity.

For example, the history of activities for a file keeps the time when a method is

10

requested, which user requests the method, which method is requested, and what outcome

of the method is (see Figure 2-2).

When a method of the entity is requested, this event is analyzed by various attack

detection techniques (discussed later) to produce IW values indicating the likelihood of

an attack associated with the event. An IW value of 1 denotes the 100% likelihood,

whereas an IW value of 0 denotes the 0% likelihood. A composite IW value is generated

by combining IW values from individual attack detection techniques.

The state class is an aggregate representation of the entity state. For example,

despite slightly different attribute values, two similar states of the entity may fall into the

same state class. In Figure 2-1, as we move from a group of components to a subsystem

at the functional level, we shift our attention from properties of individual components to

relationships of those components in the subsystem. As we move from the functional

level of a component to the conceptual level of the component, we shift our attention

from properties of the component at a given time to state transitions of the component

over time. For the subsystem at the functional level or the component at the conceptual

level, we are interested in spatial relationships of components in the subsystem or

temporal relationships of states for the component. The subsystem may contain a large

number of components, and the component may have a large number of states over time,

which all prevent us from passing all detailed state information of a component for

analysis of spatial or temporal relationships. Instead, we pass only the aggregate

information of a component to a larger scale or a higher level. In our study, the composite

IW value and the current state class together present the aggregate information of a

component to be passed on to a larger scale and a higher level. In the process model,

11

information transmission between different scales and different levels involves only

aggregate information.

Methods of an entity represent activities that occur to the entity (see Figure 2-2).

Attributes of an entity are changed by methods of the entity.

Telnet Daemon Session
Attributes Attributes

ActivityHistory
IWs

SessionID
User

1,6,10,... Methods ClientIP
ActivityHistory
IWs

Methods
^~~~~~~>-Construct

4
rue uvicösagey -,

ndMessage
^^^ 2

5.9. 13. ...
öei

Destruct

3,7,11,... / GetMessage

Login Program /
Attributes /

Password File
Attributes

ActivityHistory
IWs /

FullPathName
OwnerED

Methods /
Validates.

GroupID
Permission
ActivityHistory {time, userlD, method, outcome}
IWs

4,8,12,... ^M^thods
^^Read

Write
Execute
Create
Remove
Link
Unlink
Chown
Chgrp
Chmod

Figure 2-2. Activities in the process model during a password guessing attack.

12

The process model of a computer and network system is like a security-related

mirror reflecting activities that actually occur in the computer and network system,

including both normal and malicious activities. Figure 2-2 shows activities in a UNIX-

based host machine when an attack is launched to gain the access to this host by guessing

a user's password repeatedly until success. The numbers in Figure 2-2 indicate the

sequence of activities.

The process model provides a structured, systematic view of activities in a

computer and network system. Activities in the computer and network system are

captured by sensors which are computer programs monitoring activities of interest to the

process model. The process model is constantly updated to reflect activities occurring in

the computer and network system. The design of sensors can be based on what attribute

information needs to be collected and what methods need to be monitored for each entity

in the process model. Information at different scales and different levels of the process

model is analyzed by attack detection techniques to provide layered detection

mechanisms. Attack isolation and assessment rely on spatial and temporal relationships in

the process model. Security policies can be specified for entities in the process model at

different scales and different levels. Therefore, the process model provides a systematic

framework for design of information assurance.

2.2. Automated System Modeling

To assist in system modeling, we develop the following automated system modeling

techniques:

• Object-oriented technique for automated creation of class instances,

• Sensing, probing and testing techniques,

13

• Discrimination and classification techniques for state information aggregation, and

• Statistical techniques to learn spatial and temporal structures in the process model,

to provide all the information in the process model.

A repository of object classes must be built manually, one class for each kind of

entities in the process model (e.g., the file class for all files). Whenever an entity is

created (or removed) in a computer and network system with a distinct value of the entity

ID, an instance of the corresponding object class is automatically created (or removed).

In the process model, event-driven, object-oriented sensors are placed to monitor

method requests to each component at the functional level. A method request to a

component results in changes in properties of the component (changes in the spatial

structure of the component). From spatial structures of all components in the process

model, all other information in the process model is automatically derived.

To obtain the current state class for each entity, state information (values of

attributes along with the current event) is classified automatically using a decision tree

which is constructed using discrimination and classification techniques (e.g., ID3 for

decision tree, and CART - Classification and Regression Trees). We use the current event

and current values of attributes as the classification attributes in a decision tree, and use

the composite IW value as the target attribute in the decision tree. The decision tree

groups similar states into a state class by their IW values.

The spatial structure of a system-wide entity or the temporal structure of each

entity in the process model are generated by a set of statistical-based attack detection

techniques (discussed later). Those techniques establish a spatial link between two

14

elements or a temporal link between two states using the occurrence frequency of such a

link.

The security posture of each entity in the process model is mainly obtained from

test results. Our CACS uses probes and tests are used in addition to sensors. A sensor

monitors external events (method requests) to an entity. A probe goes inside the entity to

obtain values of its attributes. A test initiates actions on the entity (e.g., login as a guest

on a host) to reveal the security posture of the entity. Information from sensors is used to

generate an initial hypothesis on a possible attack. The hypothesis can be further verified

using information from probes and tests. Information from probes and tests is also

important to attack isolation and assessment.

2.3. Model-based Attack Detection

Existing attack detection techniques fall into two major categories: anomaly detection

and attack signature recognition. Signature recognition techniques store signatures of

known attacks, match the subject's observed behavior with those known signatures, and

signal an attack when there is a match. Attack signatures have been characterized as

strings, event sequences, activity graphs, etc. Petri Nets and rules in expert systems have

been used to represent attack signature and perform signature recognition.

Signature recognition techniques cannot detect novel attacks whose signatures are

unknown. To overcome this limitation, anomaly detection should be used as a

complement to detect novel attacks. Moreover, the repository of attack signatures must be

continuously updated to remain useful in changing system configurations, protocols,

architectures and environments. It is difficult to update a large repository of attack

15

signatures manually. We develop data mining techniques for the automated learning and

update of attack signatures from data of the past attack experience.

For a subject of interest, anomaly detection techniques establish a profile of the

subject's normal behavior, compare the observed behavior of the subject with its normal

profile, and signal attacks when the subject's observed behavior deviates significantly

from its normal profile. Several profiling techniques have been developed based on

statistical characteristics [32], predicates in formal logic [33], production rules, and

strings [34]. The statistical-based technique, as known from EDES/NIDES and

EMERALD [32], has not yet been effective to deal with many correlated attacks

involving multiple entities of a computer and network system over time (e.g., multiple

sessions). When specifying the expected behavior or security policies, production rules

are more practical than predicates, because formal logic is difficult for most security

managers to understand and use. Based on the analogy to the human immune system, the

string-based profiling technique [34] models the system normal behavior as a set of

binary strings [34]. Problems remain as to the robustness of this technique to noises and

its expression power.

None of the above profiling techniques address system modeling to a full scale

and a full level. Without the full-level, full-scale modeling of a computer and network

system, questions would always remain as to whether we were missing any system

objects and any aspects of system behavior that might be used in attacks. Our work

addresses this problem by providing a conceptual framework for system modeling as well

as automated system modeling techniques.

16

Figure 2-3 and Table 2-1 show two sets of model-based attack detection

techniques that are developed in our Cyber Attack Control System (CACS).

Techniques in SET A are applied to individual components at the functional level

of the process model. Either Petri nets or rules in expert systems can be used to

implement the signature recognition technique. Both Petri nets and rules in expert

systems can also be used for the specification technique to specify security policies and

detect any violations. Statistical process control (SPC) techniques, such as Shewhart

charts for univariate stationary processes, EWMA (Exponentially Weighted Moving

Average) for univariate dynamic processes, and Hotelling's T2 for multivariate processes,

have been successfully used in manufacturing industries to detect faults of manufacturing

systems by building statistical profiles of system performance. We develop the object-

oriented application of SPC techniques as statistical-based anomaly detection techniques

for attack detection. Using the Activity History attribute of the password file in Figure 2-

2, for instance, EWMA can be applied to measures such as the total number of all method

requests per unit time, and the total number of a particular outcome per unit time.

Hotelling's T2 can be applied to measures such as the relative distribution of method

requests among different users per unit time, and the relative distribution of different

methods per unit time.

The specification of policies and attack signatures is similar across all scales and

all levels. In SET B policies and attack signatures involve multiple components,

subsystems, or states, whereas in SET A, policies and attack signatures involve single or

multiple properties of a single component at the functional level.

17

SETA

Anomaly Detection

Statistical Specification

SPCs Petri Nets or Rules

Signature Recognition

Petri Nets or Rules

SETB

Anomaly Detection

SPCs

Statistical

Byesian Networks

Specification

HMMs Petri Nets or Rules

Signature Recognition

Petri Nets or Rules

Figure 2-3. Model-based attack detection techniques.

Table 2-1. The fit of model-based attack detection techniques in the process model.

Levels
Scales

Components Subsystems System
Objective SETB SETB SETB
Conceptual SETB SETB SETB
Functional SETA SETB SETB

SET B differs from SET A only in statistical-based anomaly detection techniques.

Statistical-based anomaly detection in SET B must correlate aggregate information from

multiple components, subsystems or states, and model probabilistic relationships for

spatial or temporal structures rather than dealing with individual properties of

components as in SET A. The Bayesian network technique [35] and Hidden Markov

Models (HMM) technique are added in SET B to fill in the gap left by existing attack

18

detection techniques on the detection of coordinated attacks at larger scales and higher

levels. These two techniques learn probabilistic relationships from information of normal

activities in a computer and network system, and use learned structural profiles to

determine the likelihood of incoming activities to be normal. Bayesian networks and

HMMs trained with attack data are unlikely to distinguish between incoming normal

activities and incoming attack activities. Due to the heterogeneous nature of attacks, both

incoming normal and attack activities would be considered different from attacks used in

training.

2.4. Conclusion

The process control approach to cyber attack detection is promising for several reasons.

First, it provides a conceptual framework to model a computer and network system in

which both normal and attack activities occur. As normal and attack activities are

systematically organized, understood and captured in the process model of a computer

and network system, information assurance techniques can be designed effectively to

cover attacks at various levels and scales of the system for layered, complimentary

defense mechanisms.

As the system is modeled from a process control perspective, well-established

techniques in process control such as SPC can be applied to overcome problems with

existing techniques. Using engineering process control (EPC, such as feedback control)

techniques, various information assurance functions (planning, detection, isolation,

assessment and reaction) can be tightly interwoven into a feedback control loop for

enhanced responsiveness. Research is required to adapt system modeling, SPC and EPC

19

techniques for traditional engineering systems into the problem context of information

assurance.

20

3. Probabilistic network Technique For cyber Attack Detection

3.1. Problem Definition

In this section we describe our attack detection problem, including the data source,

problem representation, training data, and testing data.

3.1.1. Data Source

A computer and network system within an organization typically includes a number of

host machines (e.g., machines running a UNIX operation system and machines running

the Windows NT operating system) and communication links connecting those host

machines. Currently two sources of data have been widely used to capture activities in a

computer and network system for attack detection: network traffic data and audit trail

data (audit data). Network traffic data contain data packets traveling over communication

links between host machines to capture activities over communication networks. Audit

data capture activities occurring on a host machine. In this study, we use audit data from

a UNIX-based host machine (specifically a Sun SPARC 10 workstation with the Solaris

operating system), and focus on attacks on a host machine that leave trails in audit data.

The Solaris operating system from the Sun Microsystems Inc. has a security extension,

called the Basic Security Module (BSM). The BSM extension supports the monitoring of

activities on a host by recording security-relevant events. Activities on a host machine are

captured through a continuous stream of audit events.

21

3.1.2. Training and Testing Data

In this study, we use a sample of the audit data recording both normal activities and

attack activities on host machines with Solaris 2.5. Normal activities and attack activities

are simulated to produce these audit data. Normal activities are simulated according to

normal activities observed in a real-world computer and network system [5]. A number of

attacks are also simulated, including password guessing, use of symbolic links to gain the

root privilege, attempts to gain an unauthorized remote access, etc. In the sample, the

audit data of normal activities consist of 3019 audit events, and the audit data of attack

activities consists of 1223 audit events. We use the first part of the audit data for normal

activities as our training data set, and use the remaining audit data for normal activities

and attack activities as our testing data set. The training data set consists of 1613 audit

events for normal activities. The testing data set consists of 1406 audit events for normal

activities and 1223 audit events for attack activities.

3.1.3. Knowledge Representation

An BSM audit record for each event contains a variety of information, including the

event type, user ED, group ID, process ID, session ID, the system object accessed, and so

on. Studies [28-30] show that types of events in information systems can be used to

effectively detect many attacks. Hence, in this study we extract and use the event type

from the record of each audit event. There are 284 different types of BSM audit events

from Solaris 2.5 that is used to collect the audit data.

For attack detection, we want to build a long-term profile of normal activities, and

to compare the activities in the recent past to the long-term norm profile for detecting a

significant difference. We define activities in the recent past by opening up an

22

observation window of size N on the continuous steam of audit events to view the last N

audit events from the current time t:

Et-(N-i)=t-N+i, ■••, Et, where E stands for event.

At the next time t+1, the observation window contains Et-N+2, •••, Et+i. In this study, we

let N equal to 100, because attack activities produce in average about 100 audit events in

the data sample.

We define 284 variables (Xu ..., X284) to represent 284 event types, respectively.

We investigate two ways to measure the activities in the recent past and obtain values of

the 284 variables from the last N audit events. One way, called the count measurement, is

to count the number of a certain event type appearing in the observation window. For

example, if there are 10 audit events among the N number of audit events in the

observation window fall into the 1st event type, then Xt has the value of 10. If the 3rd

event type does not show in the observation window at all, then X3 has the value of 0.

Another way, called the existence measurement, is to use 1 and 0 to represent the

existence and non-existence of a certain event type in the observation window. For the

same example, since the 1st event type shows up in the observation window (10 times),

then Xi has the value of 1. Since the 3rd event type does not appear in the observation

window at all, then X3 has the value of 0. Hence, for each observation window we can

obtain a vector X including the values of (Xi, ..., X284)-

3.1.4. Attack Detection Problem

Before training the norm profile, the stream of the 1613 audit events in the training data

set is viewed through a moving window, which in turn creates 1514 (1613-99) window

23

slices of audit events for the window size of 100 audit events. There is no window slice

created for each of the first 99 audit events, because the current audit event and previous

audit events are not sufficient to make up a complete window slice. For each window

slice of audit events, a vector of (Xi, ..., X284) is obtained. Hence, from the training data

of the 1613 audit events, we obtain 1514 vectors that we use for training a probabilistic

network as the norm profile.

For the testing, 1223 audit events for attack activities and 1406 audit events for

normal activities are viewed through a moving window, creating totally 2431 window

slices (1124 window slices for attack activities and 1307 window slices for normal

activities, numbered from No.1-1124 and No. 1125-2431). Each of the first 99 audit

events for either attack activities or normal activities does not create a window slice,

because the event and previous events together are not sufficient to form a complete

window slice of 100 audit events.

For each window slice, a vector of (Xi, ..., X284) is obtained and evaluated against

the norm profile to yield the probability that the normal profile supports this vector. The

larger the probability is, the more support the vector receives from the normal profile, and

the more likely the vector is a part of normal activities. The smaller the probability is, the

less likely the vector is normal, and the more likely it is a part of attack activities.

3.2. Learning and Inference of Probabilistic Networks

The probabilistic network technique is developed based on the theory of Bayesian

networks. In this section, we briefly review the theory of Bayesian networks. Then we

describe the probabilistic network technique.

24

3.2.1. Bayesian Networks

Bayesian networks are also called Bayesian belief networks, because they are used to

represent and infer the beliefs in a set of variables through probabilistic representation

and reasoning [36-44]. In a Bayesian network, a set of variables make up the nodes of the

Bayesian network, and a set of directed links connect pairs of nodes. A directed link from

node X to node Y represents a dependency of Y on X, such as a direct influence of X on

Y, a causal relationship of X and Y (X causing Y), a temporal relationship of X and Y (X

preceding Y), and so on. X is called a parent of Y. Each variable has a number of states.

For example, variable X may represent a particular event and has two states denoting the

occurrence or non-occurrence of this event. Each node has a conditional probabilistic

table that describes the probabilistic distribution of states for the corresponding variable

given the states of its parent nodes. If there is no directed link to the node, the conditional

probabilistic table becomes simply a probabilistic table of states for the corresponding

variable. A Bayesian network is represented through a directed acyclic graph. No directed

cycles are allowed in a Bayesian network.

The information in a Bayesian network provides a joint probability distribution of

all the variables Xi, ..., Xn in the Bayesian network. If we label these variables in an

order that is consistent with their directed links in the Bayesian network,

P(Xl,...,Xn)

= P(Xn | Xn - 1, ..., Xl) * P(Xn - 1, ..., X\)

= f[P{Xi\X-h...,Xx) (1)

= f\P(X\ parents(X))
1=1

25

Hence, the conditional probability tables in a Bayesian network provide a decomposed

representation of the joint probability table for all the variables in the Bayesian network.

From this joint probability table, we can derive the probability of any state involving any

combination of the variables. Since many pairs of variables are conditionally independent

(no directed links between them in a Bayesian network), the joint probability table is

simplified into the conditional probability tables in a Bayesian network.

In many real-world problems, we are not interested in the direction of dependence

but the strength of dependence. For example, in this study we are interested in how likely

various audit events correlate (co-occur) in a moving window during normal activities

(for a norm profile) or attack activities (for an attack profile). We may consider the causal

or temporal relationship of audit events as the direction of dependence between audit

events. However, since one audit event may cause or precede another audit event in some

activities or vice versa in other activities, a directed cycle between these two audit events

exists, which is not allowed in a Bayesian network. Therefore, in this study we consider

the strength of dependence without the direction, where the dependence between audit

events is characterized by the co-occurrence of audit events. We also need to develop the

learning and inference algorithms for a probabilistic network with undirected links.

3.2.2. Probabilistic Networks with Undirected Links

To build a probabilistic network with undirected links, we go back to the joint probability

table of the variables where no direction is implied. Then we simply the joint probability

table into a probabilistic network with undirected links. An undirected link is placed

between a pair of variables if they have a strong dependency. A joint probability table is

26

created for a group of variables which are fully dependent on each other. For example, if

variables A, B, C and D are fully linked to form a fully connected graph, a joint

probability table is created for the relation of variables A, B, C and D. Hence, the joint

probability table of all the variables are simplified into a probabilistic network with

undirected links, or in other terms, a set of smaller joint probability tables for all the

nodes and relations.

3.2.3. Learning of Joint Probability Tables

The joint probability table for a node involving a single variable X is estimated from the

training data as follows [40].

P(X = i) = ?^ (2)
N

where

N is the total number of observations in the training data,

Nx=i is the number of observations with X in state i, and

P denotes the probability that X is in state i.

The joint probability table for a relation involving more than one variable such as Xi, ...,

Xk is estimated from the training data as follows [40].

P(Xi = n, ,Xk = ik)= (3)
N

where

N is the total number of observations in training data,

Nx=i is the number of observations with Xi in state ij, ..., and Xk in state ik, and

P denotes the probability that Xi is in state ij, ..., and Xk is in state 4-

27

3.2.4. Learning of the Structure of a Probabilistic Network

The structure of a probabilistic network consists of nodes and undirected links between

nodes. Given a set of variables and a number of their observations in the training data,

nodes in a probabilistic network are constructed by creating one node for each variable.

Undirected links between variable nodes are constructed by learning the dependence

between variables from the training data.

The structure is learned through two phases. Phase I is to learn an initial structure

of the probabilistic network. Phase II uses an iterative procedure of search and scoring to

find the optimal structure of the probabilistic network.

To construct the initial structure of the probabilistic network in Phase I, we use

the chi-square test of independence to determine the strength of dependence Q between a

pair of variables Xj and Xj as follows.

Pki = Pk*P.i (5)

P, = P(Xi = k) = ^ (6)
N

P^P{Xj = l) = ^l (7)

Q^T^rl^e'dt (8)

T{x)=[t^e-dt (9)

where

28

X2 denotes the chi-square statistic,

N is the total number of observations,

Nxi=k, xj=i is the number of observations with Xj in state k and Xj in state 1,

Nxi=k is the number of observations with X; in state k,

Nxj=i is the number of observations with Xj in state 1, and

d denotes the degree of freedom which is equal to (m-l)*(n-l), m is the number of

states that Xj has, and n is the number of states that Xj has.

The larger the X2 value is, the larger difference exists between the observed frequency

and the expected frequency of Xj in state k and Xj in state / (expected under the

hypothesis of X and Xj are independent). The larger the X2 value is, the smaller the Q

value is, the less likely Xj and Xj are independent, and the stronger dependence exists

between Xj and Xj.

After computing the strength of dependence between every pair of the variables,

we rank the pairs of variables by the ascending order of Q values. The pair of the

variables that is ranked first has the strongest strength of dependence. We establish the

links between the first B pairs of the variables, with a constraint that a maximum of D

links can be established from a variable. The parameters B and D are introduced to

control the complexity of the initial structure of the probabilistic network, so that links

are established for only strongly dependent pairs of variables, while limiting the number

of links from each variable. For example, considering the following rank of variable pairs

with Q values.

1. (XI, X2) with Q = 0.10

2. (X2, X3) with Q = 0.15

29

3. (X2, X4) with Q - 0.20

4. (X3, X4) with Q = 0.25

5. (X2, X5) with Q = 0.30

6. (X5, XI) with Q = 0.35

7. (X5, X4) with Q = 0.40.

If B is set to 5 and D is set to 3, the initial structure of the probabilistic network looks like

the graph in Figure 3-1. There is no link between the pair of (X2, X5), because at the

maximum three links are allowed for variable X2. There is no link between the pair of

(X5, X4), because the total number of links is limited up to 5.

After obtaining the initial structure of the probabilistic network, we search and

find all fully connected graphs that exist in the initial structure of the probabilistic

network, from the largest fully connected graphs to the smallest fully connected graphs

which include only two nodes. For each fully connected graph, we establish a relation

node. For example, in Figure 3-1 the largest fully connected graph has three nodes, X2,

X3, and X4. A relation node R234 is established. Next, we find two fully connected graphs,

each of which has only two nodes, and establish two relation nodes, R12 and R15. Then we

obtain a joint probability table for each variable node using formula (2) and a joint

probability table for each relation node using formula (3). With the structure (nodes and

links) and the joint probability tables, the initial probabilistic network is completed.

Phase II is based on the minimum description length principle to search for the optimal

structure of the probabilistic network that best supports the training data [40]. The initial

probabilistic network is evaluated to produce the following score [40].

30

(a)

(b)

Figure 3-1. An example of the initial structure of a probabilistic network and relations among

variable nodes.

Score = A*DL(TD\PN) + C*DL(PN) (10)

where

TD stands for the training data,

PN stands for the probabilistic network,

DL(TD | PN) denotes the description length of the training data, given the

probabilistic network, which measures the support (fitness) of the probabilistic

network to the training data (the better the support, the smaller the description

length),

31

DL(PN) represents the description length of the probabilistic network which

measures the complexity of the probabilistic network,

A is a weighting factor on the measure of how well the probabilistic network

supports the training data, and

C is a weighting factor on the complexity measure of the probabilistic network.

In general, the more complex the probabilistic network is, the better support

(fitness) the probabilistic network can provide to the training data (including noises in the

training data). The probabilistic network should closely fit the training data, while

preventing the overfitting of the probabilistic network to the training data. We use a

following measure of support as the description length of the training data given the

probabilistic network.

DL{TD\PN)=]T-log10(P(O,|/W)) (11)
OieTD

where Oj is an observation in the training data, and P(Oj | PN) is the probability that Oj is

supported by the probabilistic network. P(Oj | PN) is determined by the equations in the

next section. The smaller the DL(TD | PN) value is, the better support the probabilistic

network provides to the training data.

The overfitting problem is often controlled using the Minimum Description

Length (MDL) principle [40] to minimize the complexity of a model. The complexity of

a probabilistic network depends on three factors: the number of variable nodes, the

number of relation nodes, and the size of the joint probability table at each node. If we

count the number of cells in each joint probability table, the sum of the counts over all the

joint probability tables accounts for all the three factors. Hence, we let the sum of the

counts be the description length (DL) of the probabilistic network.

32

In general, a more complex probabilistic network leads to a better support of the

probabilistic network to the training data. Our goal is to look for a probabilistic network

that minimizes the weighted sum of DL(DN | PN) and DL (PN) in formula (10), subject

to the inherently inverse relationship between DL(DN | PN) and DL (PN).

We conduct a heuristic search for an alternative probabilistic network with a

smaller score (a better probabilistic network) than the initial probabilistic network. The

only way to change the initial probabilistic network is to change its links, since the

number of variable nodes in the probabilistic network is fixed and the joint probability

tables are determined from the training data. In the heuristic search, we explore the one-

link change for all possible pairs of variable nodes in the initial probabilistic network. If

there is a link between a pair of variable nodes, a one-link change for the pair of variable

nodes is to remove the link. If there is no link between the pair of variable nodes, a one-

link change is to add a link between the pair of variable nodes. For a probabilistic

network with n nodes, there are n*(n-l)/2 possible pairs and thus the same number of

possible one-link change. Each one-link change leads to a new structure of the

probabilistic network. For each new structure, we compute the joint probability tables and

the evaluation score in formula (10). We then compare the evaluation scores for the n*(n-

l)/2 probabilistic networks, and select one with the smallest evaluation score. Then the

next round of search and scoring continues with the selected probabilistic network, until

the evaluation score no longer improves (reaching a global or local minimum).

33

3.2.5. Inference Algorithm

The support of the probabilistic network to an observation Oj in the training data in

formula (11), P(Oi | PN), is determined as follows. The observation Oj is a vector of (Xt,

...,Xn).

P(Xu...,X„) = P(Xi)*P(X2\Xl)*...*P(Xn\Xn-i,...,Xl) (12)

The conditional probability P(Xk | Xk_i Xi) represents the updated joint probability

table of Xk based on new evidences on Xk-i, ..., Xi, where k = 2, ..., n. Each P(Xk | Xk-i,

..., Xi) term in formula (13) is determined through probability update and propagation as

shown below.

If Xi and Xj are linked through relation R, P(Xj | Xi) is determined by the

following formulas which are similar to those for probability updating in a Bayesian

network [24].

P(m) (R) = normalize

P(n) (Xj) = normalize

Po»-»(R)pW(Xi)

1 Vo)(*0

3(«-l)
(Xj)

marginalize[p(m)(R)]

Pm(Xj)

(13)

(14)

where

R denotes a relation,

Xj and X are variable nodes involved in relation R,

P(m)(R) denotes the updated joint probability table of relation R based on the new

evidence on Xj,

P(m"1}(R) denotes the updated joint probability table of relation R based on another

new evidence which is also involved in R,

P(0)(R) is the prior state distribution of R before any update,

34

P(n)(Xj) denotes the updated joint probability table of Xj based on the updated

joint probability table P(m)(R) if there is any update of R, or based on the prior

joint probability table P(0)(R) if there is no update of R,

P(nl)(Xj) denotes the updated joint probability table of Xj based on another

relation which also involves Xj, and

P(0)(Xj) is the prior state distribution of Xj before any update.

Formula (13) is used to update the joint probability table of relation R from a new

evidence on Xj. Formula (14) is used to update the joint probability table of Xj from the

updated joint probability table of relation R.

Figure 3-2 shows a probability network consisting of four variable nodes (Xi, X2,

X3, and X4) and two relation nodes (R12 and R234). The initial joint probability tables are

given in part (a) of Figure 3-2. Part (b) of Figure 3-2 shows the computations for the

probability update and propagation. Given a new evidence on Xi, the updated joint

probability table of X2 is determined by first updating the joint probability table of

relation Ri2 using formula (13).

P(Xx = y,Xi = y) = 0.2 * — = 0.56
0.36

P(Xi = y,Xi = n) = 0.16*—— = 0.44
0.36

P(Xi = n,Xi = v) = 0*— = 0
0.64

P(Xi = n,Xi = n) = 0.64*— = 0
0.64

Since the sum of the above four values is 1, the normalization is not needed. We then

update the joint probability table of X2 by marginalizing XI out of the updated joint

probability table of relation R12 as follows.

35

P(X2)={y=0.2,n=0.8}

P(Rl2) =
X2 = v X2 = n

Xi=y 0.2 0.16
X2 = n 0 0.64

P(Xi) = {y=0.36, n=0.64}
P*(X,)={y=l,n=0}

*: indicates an evidence.

P(X*)={y=0.1,11=0.9}

X^

P(X3)={y=0.27,n=0.73}
P*(X3)={y=l,n=0}

P(R234) =
X2 X4 X3 P(R234)

V V y 0.02
n V y 0.07
V n y 0.18
n n y 0

Y Y n 0
n Y n 0.01

Y n n 0
n n n 0.72

(a)

P*(X2) = {y=0.56, n=0.44} P*(X4)={y=0.16,n=0.84}

P*(Rl2) =
X2 = y X2=n

X,=y 0.56 0.44
X2 = n 0 0

P*(X,)={y=l,n=0} P*(X3)={y=l,n=0}

P*(R!34) =
X2 X4 X3 P*(R234)

y y y 0.094
n V y 0.064

V n y 0.842
n n y 0
y y n 0
n y n 0
V n n 0
n n n 0

~"^ indicates the direction of probability update and propagation.

(b)

Figure 3-2. Probability update and propagation in a probabilistic network.

P{Xi = y) = 0.56 + 0 = 0.56

P(Xi = n) = 0.44 + 0 = 0.44

For another example, P(X4 | X3, Xi) requires the updated joint probability table of X4

given the new evidences on Xi and X3. To determine P(X4 | X3, Xi), we update the joint

probability table of R234 using the updated evidence on X2. The updated joint probability

36

table of R234 is again updated using the new evidence on X3. By marginalizing X2 and X3

out of the twice-updated joint probability table of R234, we obtain the updated joint

probability table of X4 as shown in part (b) of Figure 3-2.

3.3. Probabilistic Networks For Cyber Attack Detection

As discussed in section 3.1, we obtain two sets of (Xj, ..., X284) vectors from the training

data set: one set for the count measurement, and another set for the existence

measurement. The learning and inference algorithms of the probabilistic network apply to

variables with a finite number of discrete values as states. In the set of the (Xj, ..., X284)

vectors with the existence measurement, each variable has two states: existence (with the

value of 1) and non-existence (with the value of 0). In the set of the (Xi, ..., X284) vectors

with the count measurement, each variable takes a count number. Although a count is not

exactly a continuous value, it is a discrete value with possibly no upper limit. For our

attack detection problem, the upper limit of a count is equal to the size of the moving

window. That is, the largest count for a certain type of audit event is equal to the total

number of audit events in the moving window, when all audit events in the moving

window are the same type. If we take each possible value of the count as one state of a

variable, the variable may end up with possibly too many states. Since many of such

states are just slightly different and do not always appear, it would be a waste of

computer resources if we take each possible count as one state. Such a waste of computer

resources is not desirable, especially when we deal with a large-scale problem.

Therefore, we want to transform each set of (Xj, ..., X284) vectors with the count

measurement so that variables take a reasonable number of discrete states. A variety of

methods exist to discretize continuous values [40-44]. Those methods generally fall in

37

two categories. One category of the methods determine a set of dividing points to yield

the discrete segments of a continuous variable by evaluating whether this set of dividing

points lead to a better fitted model to the training data. Another category of the methods

determine a set of dividing points using a fixed formula, leading to either a linear

segmentation or non-linear segmentation. In this study, we use the following non-linear

segmentation formula to simplify the computation in learning:

State = 1 + log 2 Count if Count > 0 (15)

-0 ifCount-0

The two kinds of measurements (count and existence) produce two different sets

of (Xi, ..., X284) vectors to train two different probabilistic networks, respectively. Each

probabilistic network had 284 variable nodes. The parameter B for the maximum number

of links in a probabilistic network was arbitrarily set to 70. The parameter D for the

maximum number of links from a variable node was arbitrarily set to 3. The weighting

factor for the entropy of the training data in a probabilistic network was arbitrarily set to

9. The weighting factor for the description length of a probabilistic network was

arbitrarily set to 1.

The testing data contain the audit data for both attack activities and normal

activities. When a vector of (Xi, ..., X2g4) from a window slice of the testing data is

presented to a probabilistic network trained with the audit data of normal activities (the

norm-based probabilistic network), the probability that this vector is supported by the

norm-based probabilistic network is determined by formula (12). The larger the

probability is, the more likely activities in the window slice are normal.

38

It is possible that a vector of (X\, ..., X284) from the testing data presents a state of

a variable and/or a state of a relation among several variables which are not encountered

during the training and are thus not covered by the joint probability tables of the trained

probabilistic network. While using formula (12) to infer the support probability of the

trained probabilistic network to this vector of (Xj, ..., X2g4), we assign a state, which is

not available in the trained probabilistic network, a probability of 0.00001 which is close

to zero and is much smaller than any existing probabilities in the joint probability tables

of the trained probabilistic network.

We do not assign the probability of zero to such states, because the probability of

zero would make the final result from formula (12) become zero. This would make it

impossible to distinguish normal activities with noises from attack activities, since noises

in normal activities may introduce new states. The amount of new states from noises in

normal activities is expected much less than the amount of new states from attack

activities. By assigning a small probability rather than zero to the new states, the smaller

effect of noises in normal activities on the final result of formula (12) becomes

distinguishable from the larger effect of attack activities on the final result of formula

(12).

3.4. Results And Discussions

During the testing, we compute the probabilities that the two trained probabilistic

networks support the testing data. Table 3-1 summarizes the statistics of the testing

results. For each probability network, we compute the minimum, maximum, average and

standard deviation of the probabilities that are produced for each kind of the testing data

39

(the testing data of normal activities - normal data, and the testing data of attack activities

- attack data).

Table 3-1. The statistics of the testing results.

Training Measurement Testing Minimum Maximum Average Standard Deviatio
Normal data Existence Normal data 4.89E-05 2.64E-01 1.29E-01 1.08E-01

Normal data Existence Attack data 3.46E-113 1.48E-21 7.90E-24 1.08E-22

Normal data Count Normal data 6.04E-18 1.26E-02 1.96E-03 2.24E-03

Normal data Count Attack data 4.28E-127 1.09E-29 8.74E-32 8.44E-31

Attack data Existence Normal data 9.51E-47 3.00E-33 5.28E-34 1.14E-33

Attack data Existence Attack data 4.84E-82 4.78E-05 1.01E-07 2.02E-06

Attack data Count Normal data 8.14E-46 7.13E-26 2.83E-28 4.03E-27

Attack data Count Attack data 1.56E-82 6.60E-08 4.80E-10 4.72E-09

The two norm-based probabilistic networks, which are trained with the normal

data (audit data of normal activities) for two kinds of measurements respectively, produce

much larger probability values for the normal data than the attack data during the testing.

As shown in formula 2, the probabilities for event numbers 1125-2431 (the normal data)

are much larger than the probabilities for event numbers 1-1124 (the attack data). A

larger probability means more support of the norm-based probabilistic networks to the

data. For the existence measurement, there exists a huge gap between the minimum

probability for the normal testing data (4.89E-05) and the maximum probability for the

attack testing data (1.48E-21). For the count measurement, there also exists a huge gap

between the minimum probability for the normal testing data (6.04E-18) and the

maximum probability for the attack testing data (1.09E-29).

These results indicate that for both kinds of measurement we are able to clearly

distinguish the normal activities from the attack activities during the testing, using any

probability value in the gaps as the decision threshold. If the probability of the testing

data from a moving window is greater than the decision threshold, the activities in the

40

moving window are classified as normal. Otherwise, the activities in the moving window

are classified as attack.

In overall, the probability for the count measurement on the testing data within a

moving window is smaller than the probability for the existence measurement on the

same testing data for two reasons. First, we use the small probability value of 0.00001 for

a new state that appeared in the testing but did not show in the training, when we use

formula (12) to calculate the final probability of a vector from the moving window.

Second, the count measurement create more of such new states.

In summary, the norm-based probabilistic networks demonstrate the promising

performance in detecting attack activities during the testing, regardless of which

measurement method is used. The results from this study encourage the further

investigation of the probabilistic network technique and its application to attack

detection.

Note that the results of this study are obtained using an arbitrary set of parameters

for the probabilistic networks, such as parameter B for the maximum number of links in a

probabilistic network, parameter D for the maximum number of links from a variable

node, the weighting factor for the entropy of the training data in a probabilistic network,

and the weighting factor for the description length of a probabilistic network. In general,

the larger parameters B and D are, the better a probabilistic network can fit the training

data. However, a better fit does not necessarily lead to a better testing performance due to

the over-fitting problem. Just as many training parameters in an artificial neural network

must be determined empirically for a particular application [40], these parameters for a

probabilistic network can be determined empirically using some training and testing data.

41

References
[1] Rasmussen, J. (1986). Information Processing and Human-Machine Interaction.

New York, NY: North-Holland.

[2] Ye, N. (1996). A hierarchy of system-oriented knowledge for diagnosis of

manufacturing system faults. Information and System Engineering, 2(2), 79-103.

[3] T. Escamilla. Intrusion Detection: Network Security beyond the Firewall. New

York: John Wiley & Sons, 1998.

[4] H. Debar, M. Dacier, and A. Wespi. "Towards a taxonomy of intrusion-detection

systems," Computer Networks, 31, pp. 805-822,1999.

[5] R. Lippmann, D. Fried, I. Graf, J. Haines, K., Kendall, D. McClung, D. Weber, S.

Webster, D. Wyschogrod, R. Cunningham, and M. Zissman. "Evaluating intrusion

detection systems: The 1998 DARPA off-line intrusion detection evaluation." In

Proceedings of the DARPA Information Survivability Conference and Exposition.

Los Alamitos, CA: IEE Computer Society, pp. 12-26, January, 2000.

[6] T. Bass. "Intrusion detection systems and multi-sensor data fusion,"

Communications of the ACM, 43(4), pp. 99-105, April 2000.

[7] U. Lindqvist, and P. A. Porras. "Detecting computer and network misuse through

the production-based expert system toolset (P-BEST)," In Proceedings of the 1999

IEEE Symposium on Security and Privacy, IEEE, Oakland, CA, May 1999.

[8] P. A. Porras, and P. G. Neumann. "EMERALD: Event monitoring enabling

responses to anomalous live disturbances," In Proceedings of NISSC, October

1997.

42

[9] P. G. Neumann, and P. A. Porras. "Experience with EMERALD to date," In

Proceedings of the 1st USENIX Workshop on Intrusion Detection and Network

Monitoring, Santa Clara, California, April 1999, pp. 73-80.

[10] W. Lee, and S. J. Stolfo. "Data mining approaches for intrusion detection," In

Proceedings of the 7th USENIX Security Symposium, San Antonio, Texas, January

1998.

[11] W. Lee, S. J. Stolfo, and K. W. Mok. "A data mining framework for building

intrusion detection models," In Proceedings of the 1999 IEEE Symposium on

Security & Privacy, May 1999.

[12] W. Lee, S. J. Stolfo, and K. W. Mok. "Mining audit data to build intrusion detection

models," In Proceedings of the 4th International Conference on Knowledge

Discovery and Data Mining, New York, NY, August 1998.

[13] W. Lee, S. J. Stolfo, and K. W. Mok. "Mining in a data-flow environment:

Experience in network intrusion detection," In Proceedings of the 5th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD '99), San Diego, August 1999.

[14] G. Vigna, and R. Kemmerer. "NetStat: A network-based intrusion detection

appoach." In Proceedings of the 14th Annual Computer Security Applications

Conference, Scottsdale, Arizona, December 1998,

http://www.cs.ucsb.edu/~kemrn/netstat.html/.

[15] G. Vigna, S. T. Eckmann, and R. A. Kemmerer. "The ST AT tool suit," In

Proceedings of the DARPA Information Survivability Conference and Exposition.

Los Alamitos, CA: EEE Computer Society, pp. 46-55, January, 2000.

43

[16] S. Kumar. Classification and Detection of Computer Intrusions. Ph.D. Dissertation,

Department of Computer Science, Purdue University, West Lafayette, Indiana,

1995.

[17] C. Ko, G. Fink, and K. Levitt. "Execution monitoring of security-critical programs

in distributed systems: A specification-based approach." In Proceedings of the 1997

IEEE Symposium on Security and Privacy, pp. 134-144, 1997.

[18] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K.

Levitt, C. Wee, R. Yip, and D. Zerkle. "GrIDS - A graph-based intrusion detection

system for large networks," In Proceedings of the 19th National Information

Systems Security Conference, October 1996.

[19] T. Bowen, D. Chee, M. Segal, R. Sekar, T. Shanbhag, and P. Uppuluri. "Building

survivable systems: An integrated approach based on intrusion detection and

damage containment," In Proceedings of the DARPA Information Survivability

Conference and Exposition, Volume II Los Alamitos, CA: IEE Computer Society,

pp. 84-99, January, 2000.

[20] D. E. Denning. "An intrusion-detection model," IEEE Transactions on Software

Engineering, SE-13(2), pp. 222-232, February 1987.

[21] D. Anderson, T. Frivold, and A. Valdes. Next-generation Intrusion Detection

Expert System (NIDES): A Summary. Technical Report SRI-CSL-97-07. Menlo

Park, CA: SRI International, May, 1995.

[22] H. S. Javitz, and A. Valdes. "The SRI statistical anomaly detector." In Proceedings

of the 1991 IEEE Symposium on Research in Security and Privacy. May 1991.

44

[23] H. S. Javitz, and A. Valdes. The NIDES Statistical Component Description of

Justification. Technical Report A010. Menlo Park, CA: SRI International, March,

1994.

[24] Y. Jou, F. Gong, C. Sargor, X. Wu, S. Wu, H. Chang, and F. Wang. "Design and

implementation of a scalable intrusion detection system for the protection of

network infrastructure." In Proceedings of the DARPA Information Survivability

Conference and Exposition. Los Alamitos, CA: IEE Computer Society, pp. 69-83,

2000.

[25] W. DuMouchel, M. Schonlau. "A comparison of test statistics for computer

intrusion detection based on principal components regression of transition

probabilities," In Proceedings of the 30th Symposium on the Interface: Computing

Science and Statistics.

[26] H. Debar, M. Becker, D. Siboni. "A neural network component for an intrusion

detection system," In Proceedings of the 1992 IEEE Computer Society Symposium

on Research in Security and Privacy, Oakland, CA, May 1992, pp. 240-250.

[27] A. K. Ghosh, A. Schwatzbard, and M. Shatz. "Learning program behavior profiles

for intrusion detection." In Proceedings of the 1st USENIX Workshop on Intrusion

Detection and Network Monitoring, Santa Clara, California, April, 1999,

http://www.rstcorp.com/~anup/.

[28] S. Forrest, S. A. Hofmeyr, and A. Somayaji. "Computer immunology."

Communications of the ACM, 40(10), pp. 88-96, October, 1997.

[29] H. Debar, M. Dacier, M. Nassehi, and A. Wespi. "Fixed vs. variable-length patterns

for detecting suspicious process behavior," In Proceedings of the 5th European

45

Symposium on research in Computer Security, Louvain-la-Neuve, Belgium,

September 16-18, 1998, pp. 1-15.

[30] C. Warrender, S. Forrest, and B. Pearlmutter. "Detecting intrusions using system

calls: Alternative data models," In Proceedings of the 1999 IEEE Symposium on

Security and Privacy, pp. 133-145.

[31] Ye, N., Hosmer, C, Giordano, J., and Feldman, J. (1998). Critical information

infrastructure protection through process modeling and model-based information

fusion. In Proceedings of the Information Survivability Workshop 1998, pp. 197-

201.

[32] http://www.csl.sri.com/intrusion.html.

[33] http://seclab.cs.ucdavis.edu.

[34] Forrest, S., Hofmeyr, S. A., and Somayaji, A. (1997). Computer immunology.

Communications of the ACM, 40(10), October, 88-96.

[35] Ye, N., Giordano, J., Feldman, J., and Zhong, Q. (1998). "Information fusion

techniques for network intrusion detection". In Proceedings of the 1998 Information

Technology Conference, pp. 117-120.

[36] F. V. Jensen. The Instruction to Bayesian Networks. New York: Springer, 1996.

[37] J. Suzuki. "Learning Bayesian belief networks based on the MDL principle: An

efficient algorithm using the branch and bound technique." IEICE Transactions on

Information and Systems, Vol. E82-D, No. 2, pp. 356-367, February, 1999.

[38] J. Liu, and M. C. Desmarais. "A method of learning implication network from

empirical data: Algorithm and Monte-Carlo simulation-based validation." IEEE

46

Transactions on Knowledge and Data Engineering, 9(6), November/December, pp.

990-1004, 1997.

[39] W. L. Buntine. "Operations for learning with graphical models." J. of Artificial

intelligence Research, 2, pp. 159-225, 1994.

Http://www.cs.washington.edn/research/jair/home.html.

[40] T. M. Mitchell. Machine learning. Boston: McGraw-Hill, 1997.

[41] J. Cheng, D. Bell, and W. Liu. "Learning Bayesian networks from data: An efficient

approach based on information theory." Http://www.cs.ualberta.ca/~icheng/lab.htm.

[42] R. Hofmann, and V. Tresp. "Discovering structure in continuous variables using

Bayesian networks". In Advances in Neural Information Processing System 8,

Cambridge MA: MIT Press, 1996. Http://www7.informatik.tu-muenchen.de/~hofinannr.

[43] U. M. Fayyad, and K. B. Irani. "Multi-interval Discretization of continous-valued

attributions for classification learning." In R. Bajcsy (Ed.), Proceedings of the 13th

International Joint Conference on Artificial Intelligence. Morgan-Kaufmann, pp.

1022-1027.

[44] U. M. Fayyad, and K. B. Irani. "On the handling of continuous-Valued attributes in

decision tree generation" Machine learning, 8(1), pp. 87-102, January, 1992.

«U.S. GOVERNMENT PRINTING OFFICE: 2001-710-038-10184

47

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

